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The motion of a viscous drop in a vertical Hele-Shaw cell is studied in a limit where 
the effect of surface tension through contact-angle hysteresis is significant. It is found 
that a rectangular drop shape is a possible steady solution of the governing equations, 
although this solution is unstable to perturbations on the leading edge. Even though 
the unstable edge is one where a viscous fluid is moving into a less viscous fluid, in 
this case air, this is shown to be a special case of the well-known Saffman-Taylor 
instability. An experiment is performed with an initially circular drop in which it is 
observed that the drop shape becomes approximately rectangular except a t  the 
leading edge, where it becomes rounded and sometimes has a ragged appearance. 

A drop sliding down a vertical Hele-Shaw cell is an example of a system where the 
action of surface tension is not always one of smoothing, since in this case it leads 
to the formation of right-angle corners a t  the back of the drop (rounded only slightly 
on the lengthscale of the gap thickness of the cell). 

1. Introduction 
The motion of a viscous drop driven by gravity in a vertical Hele-Shaw cell is 

considered, where a Hele-Shaw cell consists of two parallel plates with separation very 
much smaller than the lengthscale of interest along the plates, and so the system may 
be considered as two-dimensional. The motion is assumed to be sufficiently slow for 
the zero-Reynolds-number (or Stokes flow) approximation to be appropriate and the 
effect of surface tension through the difference between the advancing and receding 
contact angles is assumed to be significant. A contact angle is informally the angle 
between the bounding solid surface and the tangent plane of the fluid-fluid interface 
at  the line of three-phase contact (or contact line). For a more precise definition of 
these terms see Jansons (1985). For simplicity we shall consider only the case of a 
viscous drop sliding through an air-filled Hele-Shaw cell, where the dynamical effect 
of air will be completely ignored. 

The motivation for this study was to improve understanding of the effect of 
contact-angle hysteresis (i.e. the discontinuity between advancing and receding con- 
tact angles) on the motion of a viscous drop sliding down an inclined plane (Dussan V. 
& Chow 1983). The case of a drop in a Hele-Shaw cell was chosen because of its 
simplicity. The problem considered in this paper is also related to the removal 
(‘washout ’) of a drop of one fluid from either a porous medium or a thin gap between 
solid surfaces, by flushing it out with another fluid. A more closely related problem 
still is the removal of a drop of fluid from a thin gap by a centrifuge. 

Problems of this sort are important in a variety of fields, for example oil recovery 
and the movement of large amounts of contaminants in lubrication films. It will also 
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FIGURE 1 .  Cross-sectional and plan view of Hele-Shaw cell 

be seen that the study of the motion of a viscous drop in a vertical Hele-Shaw cell 
is interesting in its own right, showing for example that the effectof surface tension 
on the drop shape is not always a smoothing influence and can result in the formation 
of sharp angles. 

I n  $2 we begin by deriving the equations and boundary conditions for a drop in 
a Hele-Shaw cell. The boundary conditions require some careful thought as the 
Navier-Stokes equation together with the no-slip boundary condition predict a 
non-integrable stress at the contact line (Jansons 1985). Jansons (1986) discusses the 
viscous-stress singularity in detail and shows that, in the case of a rough surface, for 
a sufficiently slowly moving contact line the singularity can be removed within 
continuum theory. In  the second part of this section we show that a rectangular drop 
shape is a possible steady solution of the governingequations and argue that the back 
of the drop is stable and the front unstable. Even though the instability occurs when 
the more viscous fluid is driven into the less viscous air, it is shown that it is in fact 
the Saffman-Taylor instability. 

I n  $3 we consider an experiment which begins with a circular drop of black treacle 
and shows that the drop shape tends to become approximately rectangular, except 
a t  the leading edge where it is rounded and sometimes has a ragged appearance. 

2. Theory 
I n  this section we derive the governing equations and boundary conditions for a 

viscous drop sliding down a vertical Hele-Shaw cell and use these equations to find 
a family of steady solutions. We shall begin by considering the limit of small capillary 
number C, where the capillary number is defined as the ratio of viscous forces to  
surface-tension forces. However, it is shown later that  the results obtained can be 
easily generalized to the case of arbitrary capillary number, and even to systems 
where there is not strictly a moving contact line a t  all, namely where a thin film of 
fluid is left behind the drop. In  this case the receding contact angle can be taken 
as IT. Note that we are using the convention that the contact angle is measured from 
the solid surface behind the contact line to the fluid-fluid interface (see figure 1) .  
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2.1. Governing equations and boundary conditions 

Define Cartesian axes with the x-axis parallel to the direction of gravity g and the 
y-axis in the plane of the Hele-Shaw cell as shown in figure 1.  Assuming that the 
characteristic dimension L of the drop in the plane of the cell is very much greater 
than the gap thickness H, we may describe the motion of the drop by lubrication 
theory. In this case, the equations of lubrication theory reduce to Darcy's law 

(1) 
(Richardson 1981), namely u = -aVv(p-pgx), 

where a = H 2 / 1 2 p ,  p is the fluid density, p is the fluid pressurc, u is the fluid velocity 
averaged over z and V is the gradient operator in the (2, y)-plane. Define V = apg, 
which is the fall speed of a drop with zero surface tension; then we may write (1)  as 

u = -avp+ v.2, (2) 

where 4 is the unit vector in the direction of increasing x. 
In the case where the capillary number C = p 0 / y  (where uo is a typical value of 

lul) is very much less than unity there exist well-defined receding and advancing 
contact angles, independent of the velocity, and the interface between the drop and 
the air may be approximated by an arc of a circle (Jansons 1986). This implies that 
there is a pressure jump independent of z at the fluid-air interface that is also 
independent of velocity. If we take the pressure in the air as zero we may define the 
pressure just inside the drop as p ,  for the advancing part of the contact line (i.e. the 
viscous fluid moving into the air) and p ,  for the receding part of the contact line. 
These are given in terms of the advancing and receding contact angles 6, and 8, by 

0- . 

where K (typically O(L-l)) is the curvature of the free surface in the plane of the drop. 
Contact-angle hysteresis implies that p ,  is not equal to p ,  and in fact p ,  > pR in 
practice, which is a result that can be proved by a thermodynamic argument. There 
must also be a transition rcgion where the interface is neither advancing nor receding 
(Dussan V. & Chow 1983); in this region the pressure is between p ,  and p ,  and the 
appropriate boundary condition is u'n = 0, where n is a unit normal to the fluid-air 
interface in the plane of the Hele-Shaw cell. 

One might hesitate before applying the above boundary conditions for the 
pressure directly to (2), because of the classical viscous-stress singularity at the 
contact line (Jansons 1985). However, this is not a problem since i t  is often found 
that, in moving-contact-line problems in which the lubrication approximation may 
be used everywhere except at the contact line, the viscous singularity can be ignored 
by using the lubrication equations even in the neighbourhood of the contact line 
(Buckmaster 1977 ; Huppert 1982). The nature of the viscous-stress singularity, which 
does not interest us here, is considered in detail by Jansons (1986) and only those 
results relevant to the current problem will be mentioned here. 

The net viscous force per unit length of the contact line on a region of size O ( H )  
about the contact line is of the order yU log ( H I S ) ,  where U is the normal speed of 
the contact line and 6 is the fundamental cutoff lengthscale of the viscous-stress 
singularity (Jansons 1986). For this viscous force in the neighbourhood of the contact 
line to be negligible we require i t  to be very much smaller than the pressure jump, 
O ( y / H ) ,  at the fluid-air interface. This implies that 43 log ( H / y )  must be very much 
less than unity. To interpret this condition we must estimate the lengthscale 6. 

8-2 
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FIQURE 2. Diagram of steady-state drop shape. 

Jansons (1986) argued that 6 is in the range from molecular dimensions up to 
macroscopic dimensions (in this case H ) .  It was also shown that S is velocity-dependent 
on rough surfaces, and that in the limit of small capillary number Sis very much larger 
than roughness dimensions. In practice all solid surfaces are rough; however, the 
details of the velocity dependence of 6 are only of minor interest here, since even with 
6 of molecular dimensions the condition C log (HIS)  + 1 is not much stronger than 
C -4 1,  as already assumed. Hence for the remainder of this paper we shall as- 
sume that the viscous-stress singularity is ignorable in the limit H -4 L,  where the 
contact-line region is only a small part of the whole drop. 

For use in the rest of this section we non-dimensionalize p ,  u and x with respect 
to y / H ,  I' and L .  Then ( 2 )  becomes 

u = -B-lV P + %  (4) 

where the parameter B = pgLH/y is the Bond number based on the lengthscale (HL);. 
For the drop to move at  all, we require that B is greater than or of the order of unity. 
In addition to this we also require that HB/L + 1, since C = O(HB/L) and C is 
assumed to be very much less than unity. 

I 

2.2. A family of steady solutions 

A family of steady solutions to the governing equation (4) interestingly is made up 
of rectangles of arbitrary aspect ratio, aligned with the x-axis. However, the 
rectangular solutions of (4) are not valid in an O ( H )  region about the corners. 

Define Lx and L, as the lengths of the vertical and horizontal sides of the 
rectangular drop (see figure 2). Then these lengths must satisfy L, L,  H equal to the 
volume of the drop, which is assumed constant. The boundary condition on the 
vertical sides, u*n = 0, may be written as n*Vp = 0. Then for a drop that is sliding 
down the Hele-Shaw cell we find 

I 

where we have taken the receding edge at  x = 0. The z-averaged velocity field is 
constant inside the drop, and is equal to 

Note that (6) implies that if B < (pA-pR) /Lx  then no motion will occur. 
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It is interesting to note that the rectangular-drop solutions to the governing 
equations would still be valid if p A  and p R  were functions of the normal velocity of 
the contact line, and so would be valid for arbitrary capillary number, since the 
velocity generated along the advancing and receding edges is independent of the 
position along the contact line. However in this case (3), for the pressure jump, is 
invalid. It has been shown by Bretherton (1961) that at a sufficiently high capillary 
number a drop changes from having a moving contact line to leaving a thin film of 
fluid. In  the case of a viscous drop moving in air this is likely to happen only at the 
receding contact line. However, if the film left behind the drop does not result in a 
large rate of change of volume, we can define an ‘effective’ contact line a t  the 
beginning of the thin film. In  this case the rectangular-drop solutions are still valid, 
since there is a well-defined pressure jump a t  the effective contact line. 

Stability of the rectangular drop 
Unfortunately, the rectangular-drop solution considered above is unstable to 

perturbations on the leading edge. The nature of the instability can be analysed, 
showing that it is of the Saffman-Taylor type. This might appear surprising at first 
sight, since at the leading edge the more viscous fluid is moving into a region occupied 
by the less viscous air, which would seem to contradict the usual conditions for the 
Saffman-Taylor instability. However, this is not the case, as will now be shown. 

The contribution to the velocity field inside the drop directly from gravity is 
uniform throughout the drop, regardless of drop shape, and is of magnitude V. This 
contribution cannot therefore give rise to an instability. To understand the instability, 
and to relate it to that studied by Saffman t Taylor (1958), it is helpful to consider 
the drop in a frame moving with velocity V 9 ;  this transforms (2) into the usual form 
of Darcy’s law. In  this frame all the fluid motion is driven by the pressure gradient 
due to contact-angle hysteresis. For a rectangular drop this pressure gradient is 
uniform and is directed from the back to the front. 

This implies that at the front of the drop we have precisely the conditions for the 
usual Saffman-Taylor instability, with the pressure gradient driving the less viscous 
air into the more viscous fluid of the drop. Note this occurs even though the net 
motion is down the Hele-Shaw cell. A t  the back of the drop the situation is reversed, 
and small perturbations on the trailing edge do decay. The time-evolution equation 
for these perturbations is the same as for the front of the drop with time reversed. 
Small perturbations on the sides of a rectangular drop appear to translate unchanged 
towards the back, since u*n  = 0. 

One wonders if a similar effect would be present in a porous rock filled with air 
except for a large viscous drop with a flat horizontal front and back, and vertical 
sides. However, even though the governing equations for a porous rock are the same 
as for a Hele-Shaw cell, the boundary conditions are much more complex, and so 
this may obscure the behaviour. 

3. Experimental results 
An experiment was performed to determine whether the time-dependent motion 

changed an initially circular drop sliding through a Hele-Shew cell into a drop of 
approximately rectangular shape. However, we did not expect the front of the drop 
to appear rectangular because of the instability of the leading edge, and it was not 
even clear whether a steady-state drop shape would exist. 

The experiment was simple and could have been performed in the average kitchen. 
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(C) (4 
FIGURE 3. Experimental results. (a) Initial state of run 1 with 2 mm gap and diameter 9 cm; ( b )  
run 1 after 15 minutes; (c) run 2 after 50 minutes with 1 mm gap and initial diameter 9 cm; (d )  
run 3 after 50 minutes with 1 mm gap and initial diameter 9.5 cm. 
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Two Perspex plates were cleaned with washing-up liquid, thoroughly rinsed with 
water and allowed to dry. These plates were then assembled into a Hele-Shaw 
cell trapping a 9-9.5 cm drop of black treacle. The drop naturally took an initially 
circular shape since the gap thickness of the Hele-Shaw cell was less than the height 
of the drop before the second Perspex plate was put into position. An approximately 
constant separation was maintained by inserting small metal plates at  the corners 
of the Perspex plates, which also allowed for the alteration of the gap for different 
experiments. The experiment was performed once with a 2 mm gap thickness and 
twice with a 1 mm gap. 

The surface tension and viscosity of the black treacle used in the experiment 
were difficult to measure and were also very sensitive to temperature. However, 
the following estimates were made: viscosity lo3 g cm-' s-l, surface tension 
60 dyne cm-l and density 1 g The advancing and receding contact angles 
were also estimated as ;R and R .  Strictly, the receding contact angle did not exist, 
since at  the rear of the drop in the experiment a thin film was left behind. However, 
because the production of the thin film did not result in a significant rate of change 
of volume it can be ignored, provided that the correct pressure jump is used as a 
boundary condition. In the limit of small capillary number this can be achieved by 
taking the effective contact angle equal to R. 

The experimental results are given in figure 3, which consists of photographs from 
three distinct runs. The best examples of the rectangular structure a t  the rear of the 
drop are shown in figures 3 (b )  and (d) ,  which illustrate the prediction of right-angle 
corners at the back. Figure 1 ( c )  is included to show that this experiment is not always 
reproducible, since it had almost the same initial conditions and was allowed to run 
for the same time as the drop in figure 3(d ) .  However, the differences here are 
probably principally due to the effects of contamination on the two bounding solid 
surfaces of the Hele-Shaw cell, rather than the instability at the leading edge of the 
drop. 

It would be interesting to repeat these experiments under better conditions to see 
if the motion of an initially circular drop is deterministic, or is highly sensitive to 
perturbations to the initial conditions. 

Figures 3 (a) also show the formation of a thin film at the rear edge of the drop, 
as mentioned earlier in this section. The velocity dependence of the film thickness 
is apparent in figure 3 from the darkness of the film region; compare the films in 
figures 3 ( b )  and (d )  for example. Later, in all the experiments the film showed signs 
of instability resulting in the formation of dry patches in its interior, and, since the 
film was estimated to be too thick (greater than 0.01 mm) for van der Waals forces 
to be directly responsible, the break-up of the film was most likely to have been due 
to surface-tension gradients resulting from local contamination of the surface. 

4. Conclusion and discussion 
We have shown that a drop sliding through a Hele-Shaw cell exhibits some 

interesting behaviour resulting from the effect of contact-angle hysteresis, and that 
a steady solution to the governing equations is a rectangular drop shape. However, 
the front of the rectangular drop was shown to be unstable, and the instability was 
identified as the one first analysed by Saffman & Taylor (1958). It is interesting to 
recall that the unstable edge is one where the more viscous fluid is moving into the 
less viscous air, and this was explained by observing that the pressure gradient due 
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to the contact-angle hysteresis was responsible and that this is directed to oppose 
the motion of the drop. 

It is not clear whether the motion of an initially circular drop is deterministic, since, 
although the front of the rectangular drop is unstable, the front of the circular drop 
may be sufficiently close to the final single finger that appears in the Saffman-Taylor 
instability for further fingering to be suppressed. However, to resolve this point either 
a better experiment or a numerical simulation is required. 

Even though we began by assuming that the capillary number was very much less 
than unity it was shown that the rectangular drop shape is a valid steady solution 
to the governing equations for arbitrary capillary number. This was because both 
at the front and back of the drop the normal velocity of the contact line was 
independent of the position along it, and, therefore, so was the pressure jump a t  the 
contact line. This is even the case when a thin film of fluid is left behind the drop 
if the rate of change of volume of the drop due to the loss of fluid to the thin film 
is sufficiently small that i t  can be neglected, which is precisely the case at  the rear 
of the drops in the experiments. In this case an effective contact line is the beginning 
of the thin film and the effective contact angle is n. However, if the initially circular 
drops considered in the experiments do tend to a steady state a t  all, this final drop 
shape will depend on the pressure jump as a function of normal velocity of the contact 
line, since the front of the drop cannot be straight, for this would be unstable. 

In all sliding-drop problems where contact-angle hysteresis is present the contact 
line can be split into three distinct regions (not necessarily connected). These are 
where the contact line is (i) advancing, (ii) not moving and (iii) receding. This 
classification of points on the contact line is applicable to both a drop sliding down 
a Hele-Shaw cell and a drop sliding down an inclined plane, and one may be used 
as an aid to understanding the mechanisms in the other. In region (ii), where the 
contact line is not in motion, the contact angle is allowed to change continuously 
between its advancing and receding values. In the case of a drop sliding down a 
Hele-Shaw cell the point of transition between regions (ii) and (iii) is much more 
clearly visible than the corresponding point for a drop sliding down an inclined plane, 
since the contact line turns through approximately a right angle within the space of 
the gap thickness of the cell. The transition point between regions (i) and (ii) is less 
pronounced and resembles that for a drop on an inclined plane more closely. 

The similarity between the equations of a Hele-Shaw cell and those of a porous 
medium, although the boundary conditions are more complex in the latter, suggest 
that a drop sliding through a porous medium may show similar characteristics to the 
drop considered in this study. For example, a drop sliding through a porous medium 
might form a flattened back (again ignoring the fluid left behind the main drop as 
was done in the case of the thin film in the Hele-Shaw cell). 

The instability at  the front of a drop sliding through a Hele-Shaw cell may be 
related to the instability at the front of a sheet of viscous fluid in the experiment 
of Huppert (1982). This experiment consisted of an inclined plane with a viscous fluid 
initially held at the top of the plane by means of a barrier. Since the horizontal 
lengthscale was large compared with the lengthscale down the plane the motion was 
approximately two-dimensional after the barrier was removed, until the appearance 
of an instability at  the leading edge. One important difference between this 
experiment and a drop sliding down a Hele-Shaw cell is that the thickness of the layer 
is not constrained. However, it is possible that the reason for the instability is still 
due to the contribution to the velocity field opposing the bulk motion resulting from 
the effect of contact-angle hysteresis. 
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